Normal Form and Transformations

Name: _____

PART 1: Normal form

Put the following groups of notes into normal form. The first is completed for you as an example.

PART 2: Calculating transformations

You are given several sets in normal order. Perform the requested operation, then write the new set in normal order. *Note that when you invert a set, you may have to recalculate its normal form.* The first is completed for you as an example.

	Original	Transformation	New set in normal order
a.	[5, 9, 11, 0]	$\stackrel{I_0}{\longleftrightarrow}$	[0, 1, 3, 7]
b.	[7, 9, 0, 1, 2]	$\xrightarrow{T_5}$	
C.	[0, 3, 4, 8]	$\xrightarrow{T_{11}}$	
d.	[2, 6, 9]	$\xrightarrow{T_9}$	
e.	[2, 5, 8, 9]	$\stackrel{I_9}{\longleftrightarrow}$	
f.	[9, 10, 1, 3, 4, 6]	$\stackrel{I_2}{\longleftrightarrow}$	
g.	[6, 9, 10, 11]	$\stackrel{I_{6}}{\longleftrightarrow}$	

Megan Lavengood. © 2023. CC BY–SA 4.0. Open Music Theory. –Page 1 of 3–

PART 3: Identifying transformations in normal form

The following pairs of sets may or may not be related by either transposition (T_n) or inversion (I_n) . If the two are related by T_n or I_n , indicate the transformation type and index number; if they are not related, write "none." The first is completed for you as an example.

	Set 1	Set 2	Relationship
a.	[5, 9, 11, 0]	[1, 2, 4, 8]	I ₁
b.	[7, 9, 0, 1, 2]	[2, 3, 4, 7, 9]	
c.	[0, 3, 4, 8]	[10, 1, 2, 6]	
d.	[2, 6, 9]	[5, 8, 0]	
e.	[2, 5, 8, 9]	[7, 10, 1, 2]	
f.	[9, 10, 1, 3, 4, 6]	[4, 5, 7, 10, 11, 0]	
g.	[6, 9, 10, 11]	[6, 7, 8, 11]	

PART 4: Identifying transformations in a score

On the following page, you are given the final page of "Nacht" from Pierrot Lunaire by Arnold Schoenberg.

- In measure 20, all the trichords formed by the eighth-note triplets in the piano can be related by transposition or inversion.
 - Calculate the T_n and I_n relationships between adjacent trichords (horizontally) as well as trichords that occur simultaneously (vertically). *Hint: it may help to put sets in normal order first.*
 - Draw arrows connecting the trichords and label each arrow with the T_n or I_n relationship. One has been completed for you.
- In any instrument, find four other trichords that are related by T_n to the trichords in m. 20. As before, draw arrows connecting each pair and label it with the T_n relationship.

Megan Lavengood. © 2023. CC BY–SA 4.0. Open Music Theory. –Page 3 of 3–