Index
A
- adjusted coefficient of determination, 166–167
- Agresti–Coull confidence interval, 321–322
- Akaike's information criterion (AIC), 486–487, 520–521
- Akaike, Hirotugu, 486
- aligning, 262
- ANOVA table, 56–59, 92–93, 114–116, 166
- Anscombe's quartet, 93–95, 118, 120, 121, 130, 135, 206
- Anscombe, Francis, 93
- ar (autoregression) function, 515–517, 523, 524, 549, 550, 553, 559, 576, 577, 590, 593
- AR(p) models, 457, 561–592
- as MA(∞) models, 562–564
- comparison with MA(q) models, 621
- confidence intervals, 578–583
- definition, 561
- forecasting, 588–591
- model assessment, 583–588
- parameter estimation, 573–583
- population autocorrelation function, 564–567
- population partial autocorrelation function, 567–569
- residuals, 583–588
- shifted, 569–570
- simulation, 570–573
- stationarity, 562
- AR(1) models, 493–526
- as MA(∞) models, 495
- confidence intervals, 515–517
- definition, 493
- forecasting, 521–525
- model assessment, 517–520
- model selection, 520–521
- parameter estimation, 507–516
- population autocorrelation function, 497
- population partial autocorrelation function, 497–499
- residuals, 517–520
- shifted, 499
- simulation, 499–503
- stationarity, 494–497
- AR(2) models, 526–561
- as MA(∞) models, 535–536
- confidence intervals, 550–552
- definition, 526
- forecasting, 557–560
- geometry, 532, 534, 546
- model assessment, 552–555
- model selection, 555–557
- parameter estimation, 544–552
- population autocorrelation function, 529–533
- population partial autocorrelation function, 533–535
- residuals, 552–555
- shifted, 536–537
- simulation, 537–541
- stationarity, 527–529
- arima function, 520, 551, 556, 582, 583, 585, 593, 617, 622–626, 631
- ARIMA() models, 631–635
- definition, 632
- ARMA() models, 456–465, 621–627
- asymptotic properties, 256–258, 551–552
- autocorrelation function, see population autocorrelation function, sample autocorrelation function
- autocovariance function, see population autocovariance function, sample autocovariance function
- autoregressive models, 492–594
B
- backshift operator, 425, 448–451, 495–496
- baseline hazard function, 242, 290–306
- bathtub-shaped hazard function, 217–218
- Bayesian information criterion (BIC), 487
- bivariate normal distribution, 537–538
- Box, George, 5, 142, 631
- Box–Cox transformation, 142
- Box–Pierce test, 482–483, 518–519, 553, 623–624
- Brown, Robert, 378
- Brown–Forsythe test, 205
- Brownian motion, 378
C
- categorical independent variables, 162–163
- Cauchy–Schwartz inequality, 12, 68
- causality, 451–456, 494–495
- censoring, 259–265
- characteristic polynomials, 457–460
- Clopper–Pearson confidence interval, 321–322
- Cochran's theorem, 92
- Cochran, William, 92
- coefficient of correlation, 53–59, 116, 148
- coefficient of determination, 53–59, 116, 148, 166–167
- comparing two survivor functions, 329–332
- competing risks, 332–342
- complete data sets, 266–273, 318–323
- conditional intensity function, 354
- conditional survivor function, 212–213
- confidence intervals
- confidence regions
- Cook's distances, 134–139
- Cook, R. Dennis, 134
- corrected Akaike's information criterion (AICC), 487
- counting function, 344
- counting process, 344
- covariates, see proportional hazards model
- Cox proportional hazardsmodel, see proportional hazards model
- Cox, David, 142, 241, 329
- coxph (Cox proportional hazards) function, 302, 305
- crude lifetimes, 335–337
- cumulative hazard function, 219
- cumulative intensity function, 350
D
- decomposition, 434–440
- dependent variable, 2, 6–9
- design matrix, 146, 158
- deterioration, 343
- deterministic models, 2–4
- detrending filters, 422–426
- DFR class, 216, 343
- diagnostics, 128–139, 480–486
- Dickey–Fuller test, 633
- difference–sign test, 491
- differencing, 425–426, 631–640
- duality, 495, 562–564
- Durbin–Watson test, 490
E
- Einstein, Albert, 378
- empirical survivor function, 319–323
- exponential distribution, 220–227, 231
- exponential power distribution, 233
- exponentially-weighted moving average, 432–433
F
- filtering, 419–434
- Fisher information matrix, 197, 269, 274, 279, 286, 292
- Fisher, Ronald, 470
- fitted values, 32–38, 148
- Forbes, James, 44
- forecasting, 476–480
- forward stepwise regression, 171–172
G
- Galton, Francis, 105
- gamma distribution, 232
- Gauss, Carl Friedrich, 9
- Gaussian white noise, 371
- general linear models, 446–456
- generalized Pareto distribution, 234
- glm (generalized linear model) function, 198
- Gompertz distribution, 234
- Greenwood's formula, 328–329
H
- Haenszel, William, 329
- hat matrix, 129, 150, 159
- hazard function, 214–219
- Hessian matrix, 11, 67–68
- hyperexponential distribution, 235
- hypergeometric distribution, 330
- hypoexponential distribution, 235
I
- IDB distribution, 234
- idempotent matrix, 159
- IFR class, 216, 343
- iid noise, 371
- improvement, 343
- independent increments, 345
- independent variables, 2, 6–9
- inference concerning β0, 76–80, 116–117
- inference concerning β0 and β1, 90–91, 117–118, 150
- inference concerning β1, 72–76, 101–102, 116–117
- inference concerning σ2, 69–72, 116, 149
- inference concerning , 80–84, 102–103, 149
- inference concerning , 85–90, 103–105, 149
- inference in simple linear regression, 64–118
- influential points, 134–139
- information matrix, see Fisher information matrix, observed information matrix
- intensity function, 343, 350–355
- interaction terms, 163–165
- interval censoring, 260, 312
- inverse Gaussian distribution, 233, 254–255, 257
- invertibility, 451–456, 461–463
J
K
L
- least absolute deviation criterion, 61
- least squares estimators, 9–17, 469, 508–511, 546–548, 576–577
- left censoring, 260
- Legendre, Adrien–Marie, 9
- leverage, 128–134, 159
- definition, 129
- lifetime distribution representations, 210–219
- likelihood ratio statistic, see log likelihood function
- likelihood theory, 253–255
- linear filters, 427–433
- Ljung–Box test, 483, 518–519, 553, 623–624
- lm (linear model) function, 15, 20, 33, 35, 44, 46, 49, 57, 72, 75, 76, 79, 83, 84, 88, 94, 97, 107, 113, 126, 131, 141, 161, 169, 179, 180
- log likelihood function, 282–285, 287–288
- log logistic distribution, 233
- log normal distribution, 233
- log-log model, 191–193
- log-rank test, 329–332
- logistic regression, 189–203
- logit model, 191–193
M
- MA(q) models, 457, 618–621
- MA(1) models, 595–614
- MA(2) models, 615–618
- Makeham distribution, 234
- Mantel, Nathan, 329
- Mantel–Haenszel test, see log-rank test
- matrix approach
- maximum likelihood estimators, 65–69, 149, 159, 196–200, 254–255, 267, 274, 280, 285, 291, 469–476, 511–515, 548–552, 577–583
- mean square error, 40–41
- Meier, Paul, 324
- memoryless property, 221–222
- method of moments, 468-469, 507–508, 544–546, 573–576
- Mill's ratio, 214
- model selection
- moment ratio diagrams, 235–241
- Monte Carlo simulation, 19–22, 28–29, 48–50, 61, 118–120, 204, 206, 223, 247, 248, 308, 309, 360, 362, 363, 373, 443, 444, 475, 489, 490, 499–503, 537–541, 570–573, 616–618, 647
- moving average, 427–433
- moving average models, 594–621
- multicollinearity, 167–171
- multiple linear regression, 155–172
- adjusted coefficient of determination, 166–167
- ANOVA table, 166
- categorical independent variables, 162–163
- coefficient of determination, 166–167
- examples, 155
- fitted values, 158
- geometry, 156
- hat matrix, 159
- interaction terms, 163–165
- interpreting coefficients, 160
- least squares estimators, 158
- matrix approach, 157–159
- maximum likelihood estimators, 159
- model, 156, 158
- model selection, 171–172
- multicollinearity, 167–171
- nonlinear terms, 161
- normal equations, 158
- normal error terms, 157, 159
- residuals, 159
- variance inflation factors, 168–170
- multivariate normal distribution, 381, 570–573
- Muth distribution, 231
N
- net lifetimes, 333–334
- nls (nonlinear least squares) function, 185
- noise terms in time series analysis
- nonhomogeneous Poisson processes, 350–355
- noninformative censoring, see randomly censored data sets
- nonlinear least squares, 184–185
- nonparametric methods, 318–332
- nonstationary time series models, 627–640
- normal equations, 10, 147, 158
- normal error terms, 64–65, 149, 157
- normalized spectral density function, 644–645
- Nyquist frequency, 642
O
- observed information matrix, 197, 269, 274, 279, 282, 286, 292
- odds, 200–203
- overdispersed renewal processes, 347
P
- Pareto distribution, 233
- partial autocorrelation function, see population partial autocorrelation function, sample partial autocorrelation function
- partitioning the total sum of squares, 51–59, 148
- geometry, 152
- periodogram, 645–649
- Peto, Julian, 332
- point processes, 342–355
- Poisson processes, 345–346
- population autocorrelation function, 380–388, 497, 529–533, 564–567
- population autocovariance function, 380–388
- population mean function, 382
- population partial autocorrelation function, 411–417, 497–499, 533–535, 567–569
- prediction intervals
- probability density function, 213–214
- probit model, 191–193
- product–limit estimator, 324–329
- proportional hazards model, 241–244, 290–306
Q
R
- random variate generation, see Monte Carlo simulation
- random walk, 372–376, 385–386, 388
- randomly censored data sets, 281–289
- rank vector, 299
- Rayleigh distribution, 263–265, 315
- redistribute-to-the-right algorithm, 326–327
- regression, see simple linear regression, multiple linear regression
- regression function, 6
- regression models with nonlinear terms, 180–188
- regression through the origin, 122–128
- sum of squares for error, 128
- regression to the mean, 105
- remedial procedures, 140–145
- renewal processes, 346–350
- residuals, 33–38, 47, 98–101, 108–111, 148, 480–486
- ridge regression, 170–171
- right censoring, 259–265
S
- sample autocorrelation function, 399–411, 482–483
- sample autocovariance function, 399–411
- sample partial autocorrelation function, 417–418
- SARIMA models, 635–640
- scatterplot, 13–14, 97, 107, 111–113
- seasonal moving average, 430–431
- Shapiro–Wilk test, 101, 110, 114, 143, 485
- shifted AR(p) models, 569–570
- shifted AR(1) models, 499
- shifted AR(2) models, 536–537
- shifted ARMA() models, 463–465, 622
- simple linear regression, 2–59
- ANOVA table, 56–59, 92–93, 114–116
- coefficient of correlation, 53–59, 116, 148
- coefficient of determination, 53–59, 116, 148
- diagnostics, 128–139
- fitted values, 32–38, 148
- geometry, 12, 16–17, 51, 65, 81–82, 152
- hat matrix, 129
- inference in, 64–118
- least squares estimators, 9–17, 147
- matrix approach, 146–155
- maximum likelihood estimators, 65–69, 149
- mean square error, 40–41, 148
- model, 6–9, 147
- normal equations, 10, 147
- normal error terms, 64–65, 149
- partitioning the total sum of squares, 51–59, 148, 152
- procedure, 7–8
- regression through the origin, 122–128
- remedial procedures, 140–145
- residuals, 33–38, 47, 98–101, 108–111, 113–114, 148
- sum of squares for error, 40–41, 52–59
- sum of squares for regression, 52–59
- total sum of squares, 52–59
- variance of error terms, 39–51
- with nonlinear terms, 180–188
- spectral analysis, 641–649
- spectral density function, 642–645
- stationarity, 388–399, 461–463
- statistical models, 5–6
- stepwise regression, 171–172
- sum of squares for error, 40–41, 52–59, 152
- sum of squares for regression, 52–59, 152
- superpositioning, 354–355
- survfit (fit survival curve) function, 326, 329
- survival analysis
- survivor function, 212–213
- survivor function estimation
T
- time series analysis
- basics, 366–442
- computing, 378–380, 418, 440–442, 592–594
- nonstationary models, 627–640
- operations, 419–442
- probability models, 446–465
- properties, 380–418
- causality, 451–456
- invertibility, 451–456, 461–463, 599–600, 620
- population autocorrelation function, 380–388, 497, 529–533, 564–567, 596–599, 620
- population autocovariance function, 380–388
- population partial autocorrelation function, 411–417, 497–499, 533–535, 567–569, 601–602
- sample autocorrelation function, 399–411
- sample autocovariance function, 399–411
- sample partial autocorrelation function, 417–418
- stationarity, 388–399, 461–463, 494–497, 527–529, 562, 596–599, 620
- spectral analysis, 641–649
- statistical methods, 466–488
- total sum of squares, 52–59, 152
- transformations, 420–422
- Tucker, Justin, 189
- turning point test, 483–484, 519, 554–555, 624–625
- Type I censored data sets, 279–281
- Type II censored data sets, 274–279
U
- underdispersed renewal processes, 347
- uniform distribution, 233
- unit roots analysis, 461–463, 496, 562
V
W
- Wald confidence interval, 321–322
- Walker, Gilbert, 529
- Weibull distribution, 215–216, 223, 227–231, 231
- Weibull, Waloddi, 227
- weighted least squares, 172–180, 185–188
- white noise, 371
- Wilson–score confidence interval, 321–322
- Working–Hotelling confidence band, 121
Y