"

Chapter 4: Genes and Environment

Heredity and Chromosomes

Heredity is the passing on of traits from parents to their offspring. For humans, through sexual reproduction, the offspring acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection.

 

Video 4.1 Heritability explained.

Gametes

There are two types of sex cells or gametes involved in reproduction: the male gametes, or sperm, and female gametes, or ova. The male gametes are produced in the testes through a process called spermatogenesis, which begins at about 12 years of age. The female gametes, which are stored in the ovaries, are present at birth but are immature. Each ovary contains about 250,000 ova but only about 400 of these will become mature eggs. Beginning at puberty, one ovum ripens and is released about every 28 days, a process called oogenesis.

After the ovum or egg ripens and is released from the ovary, it is drawn into the fallopian tube and in 3 to 4 days, reaches the uterus. It is typically fertilized in the fallopian tube and continues its journey to the uterus. At ejaculation, millions of sperm are released into the vagina, but only a few reach the egg and typically, only one fertilizes the egg. Once a single sperm has entered the wall of the egg, the wall becomes hard and prevents other sperm from entering. After the sperm has entered the egg, the tail of the sperm breaks off and the head of the sperm, containing the genetic information from the father, unites with the nucleus of the egg. As a result, a new cell is formed. This cell, containing the combined genetic information from both parents, is referred to as a zygote.

 

Video 4.2 Fertilization shows how one single sperm survives the long and treacherous journey to fertilize the mother’s egg.

Chromosomes

While other normal human cells have 46 chromosomes (or 23 pairs), gametes contain 23 chromosomes. Chromosomes are long threadlike structures found in a cell nucleus that contains genetic material known as deoxyribonucleic acid (DNA). DNA is a helix-shaped molecule made up of nucleotide base pairs [adenine (A), guanine (G), cytosine (C), and thymine (T)]. In each chromosome, sequences of DNA make up genes that control or partially control a number of expressed characteristics, known as traits, such as eye color, hair color, and so on. A single gene may have multiple possible variations or alleles. An allele is a specific version of a gene. So, a given gene may code for the trait of hair color, and the different alleles of that gene affect which hair color an individual has.

In a process called meiosis, segments of the chromosomes from each parent form pairs, and genetic segments are exchanged as determined by chance. Because of the unpredictability of this exchange, the likelihood of having offspring that are genetically identical (and not twins) is one in trillions. Genetic variation is important because it allows a species to adapt so that those who are better suited to the environment will survive and reproduce, which is an important factor in natural selection.

Genotypes and Phenotypes

When a sperm and egg fuse, their 23 chromosomes pair up and create a zygote with 23 pairs of chromosomes. Therefore, each parent contributes half the genetic information carried by the offspring; the resulting physical characteristics of the offspring (called the phenotype) are determined by the interaction of genetic material supplied by the parents (called the genotype). A person’s genotype is the genetic makeup of that individual. Phenotype, on the other hand, refers to the individual’s inherited expressed characteristics, including physical and behavioral characteristics.

Look in the mirror. What do you see, your genotype or your phenotype? What determines whether or not genes are expressed? Actually, this is quite complicated, and we will discuss it later in the chapter. Some features follow the additive pattern which means that many different genes contribute to a final outcome. Height and skin tone are examples. In other cases, a gene might either be turned on or off depending on several factors, including the gene with which it is paired or the inherited epigenetic tags.

Genetic Variation and Inheritance

Genetic variation, the genetic difference between individuals, is what contributes to a species’ adaptation to its environment. In humans, genetic variation begins with an egg, several million sperm, and fertilization. The egg and the sperm each contain 23 chromosomes, which make up our genes. A single gene may have multiple possible variations or alleles (a specific version of a gene), resulting in a variety of combinations of inherited traits.

Genetic inheritance of traits for humans is based upon Gregor Mendel’s model of inheritance. For genes on an autosome (any chromosome other than a sex chromosome), the alleles and their associated traits are autosomal dominant or autosomal recessive. In this model, some genes are considered dominant because they will be expressed. Others, termed recessive, are only expressed in the absence of a dominant gene. Dominant traits include curly hair, facial dimples, normal vision, and dark hair. Recessive characteristics include red hair, pattern baldness, and nearsightedness.

DOMINANT AND RECESSIVE CHARACTERISTICS

Table 4.1 Characteristics in the left-hand column dominate over those characteristics listed in the right-hand column.

TRAIT DOMINANT TRAITS RECESSIVE TRAITS
eye coloring brown eyes grey, green, hazel, blue eyes
vision farsightedness
normal vision
normal vision
normal vision
normal vision
nearsightedness
night blindness
color blindness*
hair dark hair
non-red hair
curly hair
full head of hair
widow’s peak
blonde, light, red hair
red hair
straight hair
baldness*
normal hairline
facial features dimples
unattached earlobes
freckles
broad lips
no dimples
attached earlobes
no freckles
thin lips
appendages extra digits
fused digits
short digits
fingers lack 1 joint
limb dwarfing
clubbed thumb
double-jointedness
normal number
normal digits
normal digits
normal joints
normal proportion
normal thumb
normal joints
other immunity to poison ivy
normal pigmented skin
normal blood clotting
normal hearing
normal hearing and speaking
normal- no PKU
susceptibility to poison ivy
albinism
hemophilia*
congenital deafness
deaf mutism
phenylketonuria (PKU)

Sickle cell anemia is an autosomal recessive disease; Huntington’s disease is an autosomal dominant disease. Other traits are a result of partial dominance or co-dominance in which both genes are influential. For example, if a person inherits both recessive genes for cystic fibrosis, the disease will occur. But if a person has only one recessive gene for the disease, the person would be a carrier of the disease.

In this example, we will call the normal gene “N,” and the gene for cystic fibrosis “c.” The normal gene is dominant, which means that having the dominant allele either from one parent (Nc) or both parents (NN) will always result in the phenotype associated with the dominant allele. When someone has two copies of the same allele, they are said to be homozygous for that allele. When someone has a combination of alleles for a given gene, they are said to be heterozygous. For example, cystic fibrosis is a recessive disease which means that an individual will only have the disease if they are homozygous for that recessive allele (cc).

Punnett square diagram showing the genetic cross between two parents with heterozygous genotypes for eye color (Aa x Aa). The grid displays four possible combinations: one AA (homozygous dominant), two Aa (heterozygous), and one aa (homozygous recessive). This results in a 75% chance of brown-eyed offspring (AA or Aa) and a 25% chance of blue-eyed offspring (aa).
Figure 4.1 Punnett Square. Example for eye color.

Imagine that a woman who is a carrier of the cystic fibrosis gene has a child with a man who also is a carrier of the same disease. What are the odds that their child would inherit the disease? Both the woman and the man are heterozygous for this gene (Nc).  We can expect the offspring to have a 25% chance of having cystic fibrosis (cc), a 50% chance of being a carrier of the disease (Nc), and a 25% chance of receiving two normal copies of the gene (NN).

 

Video 4.3 An Introduction to Mendelian Genetics demonstrates another example of the interaction of alleles using the Punnett square.

Where do harmful genes that contribute to diseases like cystic fibrosis come from? Gene mutations provide one source of harmful genes. A mutation is a sudden, permanent change in a gene. While many mutations can be harmful or lethal, once in a while a mutation benefits an individual by giving that person an advantage over those who do not have the mutation. Recall that the theory of evolution asserts that individuals best adapted to their particular environments are more likely to reproduce and pass on their genes to future generations. In order for this process to occur, there must be competition—more technically, there must be variability in genes (and resultant traits) that allow for variation in adaptability to the environment. If a population consisted of identical individuals, then any dramatic changes in the environment would affect everyone in the same way, and there would be no variation in selection. In contrast, diversity in genes and associated traits allow some individuals to perform slightly better than others when faced with environmental change. This creates a distinct advantage for individuals best suited for their environments in terms of successful reproduction and genetic transmission.

Sex-Linked Traits

Twenty-two of the chromosomes from each parent are similar in length to a corresponding chromosome from the other parent. However, the remaining chromosome looks like an X or a Y. Half of the male’s sperm contains a Y chromosome and half contain an X. All of the ova contain X chromosomes. If the child receives the combination of XY, the child will be genetically male. If it receives the XX combination, the child will be genetically female.

Sex-linked traits are genes located on a sex chromosome (the 23rd pair). In humans, the term generally refers to traits that are influenced by genes on the X chromosome. This is because the X chromosome is large and contains many more genes than the smaller Y chromosome. In a sex-linked disease, it is usually males who are affected because they have a single copy of the X chromosome that carries the mutation. In females, the effect of the mutation may be masked by the second healthy copy of the X chromosome.

 

Video 4.4 Sex-Linked Traits explains the traits carried on the 23rd pair of chromosomes and how these impact an individual.

Diagram illustrating X-linked recessive inheritance. The father has an XY genotype with a normal X chromosome, indicating he is unaffected. The mother has two X chromosomes, one normal and one carrying the recessive gene, making her a carrier. The offspring include: a son with the normal X from the mother (unaffected male), a daughter with two normal X chromosomes (unaffected female), a son with the affected X from the mother and a Y from the father (affected male), and a daughter with one normal and one affected X (carrier female). The diagram shows how the trait is passed through the X chromosome and affects males more frequently.
Figure 4.2 Sex-linked traits

Check Your Understanding

 

 

 

 

definition

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Child and Adolescent Development: A Topical Approach (2nd Edition) Copyright © 2023 by Krisztina V. Jakobsen and Paige Fischer is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.